Telegram Group & Telegram Channel
📊 Может ли использование MSE в логистической регрессии привести к другим локальным минимумам по сравнению с кросс-энтропией

Да, может. Хотя кросс-энтропия обычно приводит к единственному глобальному минимуму (в терминах логарифмического правдоподобия), использование среднеквадратичной ошибки (MSE) может создать более сложный ландшафт ошибки, особенно в нелинейной области логистической функции.

🔍 Почему так происходит

🔎 MSE не согласована с сигмоидой
Логистическая функция быстро насыщается — и в этих зонах градиенты MSE становятся очень малыми, что замедляет обучение или может ввести оптимизатор в заблуждение.


🔎 Плоские или нестабильные участки
Из-за особенностей формы функции ошибки при MSE, градиенты могут быть почти нулевыми в широких зонах, а значит — модель может застрять в субоптимальных решениях.


🔎 Кросс-энтропия лучше «соотнесена» с логистической регрессией
Она прямо оптимизирует логарифмическое правдоподобие и ведёт к более «чистому» и выпуклому ландшафту потерь, что помогает градиентному спуску быстрее находить оптимум.


Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/976
Create:
Last Update:

📊 Может ли использование MSE в логистической регрессии привести к другим локальным минимумам по сравнению с кросс-энтропией

Да, может. Хотя кросс-энтропия обычно приводит к единственному глобальному минимуму (в терминах логарифмического правдоподобия), использование среднеквадратичной ошибки (MSE) может создать более сложный ландшафт ошибки, особенно в нелинейной области логистической функции.

🔍 Почему так происходит

🔎 MSE не согласована с сигмоидой
Логистическая функция быстро насыщается — и в этих зонах градиенты MSE становятся очень малыми, что замедляет обучение или может ввести оптимизатор в заблуждение.


🔎 Плоские или нестабильные участки
Из-за особенностей формы функции ошибки при MSE, градиенты могут быть почти нулевыми в широких зонах, а значит — модель может застрять в субоптимальных решениях.


🔎 Кросс-энтропия лучше «соотнесена» с логистической регрессией
Она прямо оптимизирует логарифмическое правдоподобие и ведёт к более «чистому» и выпуклому ландшафту потерь, что помогает градиентному спуску быстрее находить оптимум.


Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/976

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA